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Abstract—An interlaminar-shear-stress analysis developed earlier by Tsai et al. (1990, Micro-
cracking-Induced Damuage in Composites) for a [¢../0,]. bi-directional composite laminate is used
to solve the case of a cross-ply [0,,/90,], laminate with the 90" layer only or both layers cracked
under purc shear loading. Strains, forces and laminate shear modulus reduction due to matrix
cracking were obtained. Experimental results for shear modulus as a function of crack densities
were obtained by a simple shear test and they agree very well with the theoretical prediction.

INTRODUCTION

A great deal of work has been reported to date on axial stiffness degradation in composite
laminates due to matrix cracking. Highsmith and Reifsnider (1982) and Ogin ¢r af. (1985)
used a shear lag analysis. Talreja (1985) used stiffness-damage relationships based on
continuum mechanics and internal variables; Hashin (1985, 1987) used variational prin-
ciples; Lim and Hong (1989) proposed a modificd shear lag analysis; Lee (1988) and Lee
and Danicl (1990) proposed another modificd shear lag analysis: an interlaminar-shear-
stress analysis was developed by Tsai e al. (1990) ; Dvorak et afl. (1985) and Laws and
Dvorak (1988) used statistical fracture mechanics ; Caslini et al. (1987), Sun and Jen (1987),
Allen et al. (1988) and Groves er al. (1987) used finite clement methods; Aboudi er al.
(1988) used a second-order Legendre expansion for displacements and the finite element
method ; Tan and Nuismer (1989) used the state of stress in a cracked laminate and a
fracture criterion based on energy considerations. Relatively few investigations have dealt
with shear modulus reduction. Hashin (1985), Tan and Nuismer (1989) and Herakovich er
al. (1988) analysed cross-ply laminates with cracks in the 90° layer under in-plane normal
and shear loading but they did not offer experimental data for comparison. Yaniv et al.
(1989) conducted simple shear tests to monitor the shear modulus reduction during fatiguc
loading. An improved simple shear test was described recently by Tsai and Daniel (1991).

A general interlaminar-shear-stress analysis was developed earlier for a [¢,,/0,], bi-
directional composite laminate by Tsai er al. (1990) which does not start with the
usual assumption of the classical shear lag analysis that the interlaminar shear stresses are
proportional to the displacement difference between the two layers. However, the analysis
shows agreement with this assumption. From this analysis a system of governing equations
was derived that involves only in-planc displacements in both layers, based on equilibrium,
continuity and boundary conditions. This system can be solved to analyse cross-ply lami-
nates [0,,/90,], with onc or both layers cracked under different loading conditions by
imposing appropriate boundary conditions, The cracks in the matrix are assumed to be
normal to the x-y plance (Fig. 1), although it was found experimentally by Highsmith and
Reifsnider (1982). Groves er al. (1987) and Allen ¢r al. (1988) that this is not always true.
Predictions of stiffness reduction duc to cracks in both layers were obtained and proved
experimentally by Daniel and Tsai (1991). In this work the reductions of shcar modulus
due to cracks in the 90” layer only and duc to cracks in both layers arc predicted and verified
experimentally. Although the approach used here is fundamentally different, the prediction
for shear modulus reduction due to cracks in the 90 layer is identical with that of Hashin
(1985) and Tan and Nuismer (1989) and agrees very well with experimental data.
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Fig. 1. Cross-ply [0,,/90,], laminate with cracked 90 layer and free body diagrams of clements.

GOVERNING EQUATIONS FOR CROSS-PLY LAMINATES
For cross-ply laminates the interlaminar-shear-stress analysis provides the relation-
ships among the through-the-thickness average displacements of cach layer in the form of
the following partial differential cquations obtained by Tsai ¢f al. (1990) :

H - .
Qatty oo+ Qral2 + Qoalllyy +024) = h“ (1, —da,), H
_ _ - _ Hy oL
Quitiy o+ Q1al 1+ Qoollly y +014) = . (1, —1is), (2)
|
Ql IE'Z,N' +Ql2ﬁl.,r,v+ be(ﬁl..r.r +l;2..\{r) = /'31 (E.’.-L_‘I)s (3)
R - - - Hy,
QZ'.‘l‘l.yr+QI2“I.,\‘_V+Qh6(vl.Jx +ily ) = —h_(l" —0,), 4)
i

where Q. Q2. @11 and Qg are stiffness parameters of the basic lamina, with Q. = G,
(in-planc shear modulus) in our case; 4, £, &, and 7, are average displacements of the 0’
and 90" layers in the x- and y-directions, A, is thickness of the 0° layer and A, is the half
thickness of the 90° layer (Fig. 1). H,, and H,, are interlaminar-shear-stress parameters
given by

361,02

_ 3 36,6y
N ,1:G|3+/11623’

=l—'—l_—GIJ+hZG!J‘

Hll HZB

where G, and G,, are out-of-plane shear moduli of the basic lamina.

The left-hand sides of eqns (1)-(4) are gradients of stress which can be related to
interface shear stresses. The right-hand sides are differences of displacement between the
two layers. The interlaminar-shear-stress parameters can be viewed physically as effective
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shear stiffnesses relating interface shear stresses and average displacement differences
between the two layers.

LAMINATES WITH CRACKS IN 90 LAYER

Stress analysis

The stresses and strains in the undamaged laminate are independent of the location
coordinates x and 1. This means that the displacements i,. ¢,. &, and ¢, should be linear
and. under pure shear loading. should give no rise to normal strains or stresses along the
x- and y-axes: )

i, =Cy, (5)
= C,x, (6)
i, = Cyy, (7
= Cyx. (8)

When only the 90 layer is cracked with a crack spacing /.. the disturbance in the
solution above will only be a function of x (Fig. 2). Furthermore, only the displacement
components &, and £, will be disturbed in order to maintain the pure shear state of strain.
This disturbance is a hyperbolic term as suggested by Tsai ef al. (1990) for the governing
equittions (1) (4). Thus, for the cracked laminate we have:

= Cy, 9
= Cyx+Cqsinh (), (10)
iy = Cyn, (1)
r, = C,x+ C,sinh (2x), (12)

where 2 is the cigenvalue and C, (i = 1,2,...,6) are unknown cocilicients to be determined.
Substituting eqns (9)-(12) into eqns (1)-(4), we obtain:

C| = C), . (]3)
C,=0C,, (14)
, Haf1 1
* = 0 (h.’ *hi)’ (13)
z y
! /

Ny, Egealimmeadecksusni s/,
ol e BT T T
L/

Fig. 2. Cracked cross-ply [0,,/90,], laminate under pure shear loading.
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co=-"c 16
$= 7y Ce (16)
The displacements then become :
i, = Cyy. (t7)
hs .
fy=Cix— IT C, sinh (xx), (18)
1
171 = C]_V. (19)
l-': = C:.\‘-i- C(, Sinh (1.\‘). (20)

which result in zero normal strains. Shear strains are derived as:

h,
}'u“-=C|+C:~I:’- C.x cosh (o), 21
1
7oy = Cp+Co 4+ Cux cosh (ax). (22)

From these shear strains, we obtain shear forees in cach layer as follows:

h,

Ny, = /'1Q¢-(,|:('| + (': - I:. C.x cosh (ax):| (23)
1

N.‘\V = h!Q(»h[(-l + ('2 + (/‘(,1 Cosh (1.")]. (24)

All normal forees are zero.
If N,, is the shear foree per unit width (or length) applicd to the laminate, then at the
cruck boundary x = +7,/2 we have N, = N,,/2 and N,,, = 0. This condition yields:

N,

Cp= = e
‘ Qoe2(h, +h,)a cosh (27 /2)

(25)

N,
S A S 2
= S, ) (26)

There is an infinite number of pairs of solutions for C, and C,, because of the rigid body
rotation. However, the sum (C, + C,) is alwavs a constant.
The shear strains and shear forces in cach layer become:
N, N, cosh (xx
Vi = s ] T “._-v(_,..)__ s (27)
Que2(hy +115) h, cosh (2/,/2)

g = NMu  }_ cosh(ay)
T = G 3 + ) [' " cosh (a/,/Z):I' (28)

Ny [H—hz cosh(a.\')] (29)

\, - = — _—
M 2(h, +hs) h, cosh (a7 /2)
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N.. N h- [l cosh (2x) ] (30)

* = 3h,+hy) | cosh(2/.2)

Shear modulus reduction
The shear strain in the laminate defined as the average shear strain in the undamaged
layer is:

‘2 N,
:'\'v = Yiw d- /( = _——'i‘—~° 3l
e (J‘—/:I]| ’ Y)/ ' P Qee(hy+h3) 3h

o

where p;; is the shear modulus reduction ratio:

Experimental results
The material used was a graphite/cpoxy (AS4/3501-6, Hercules, Inc.) with the following
propertics :

longitudinal modulus: £, = 145 GPa (21.0 Msi),

transverse modulus: £, = 10.6 GPa (1.54 Msi),

in-planc shear modulus: G, = 6.9 GPa (1.00 Msi),

out-of-plane transverse shear modulus: Gy = 7.0 GPa (1.01 Msi),
out-of-planc transverse shear modulus: G,y = 3.7 GPa (0.54 Msi),
major Poisson’s ratio: v, = 0.27.

Composite cross-ply coupons of {0/90,], and [0/90,], layup were tested in a fixture
specially developed by Yaniv er al. (1989) (Fig. 3). The specimens were standard straight-
edge coupons, 2.54 ¢cm (1 in.) wide and 23 cm (9 in.) long. When the specimen is mounted
in the fixture, two 1.27 ¢m (0.5 in.) wide and 2.54 cm (1 in.) long strips of the coupon are
exposed as the test section and are subjected to shear loading. The relative motion of the
central rails with respect to the outer rails is measured with an extensometer as shown in
Fig. 3.

Fig. 3. Simple shear test fixture.

SAS 29:24-M
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L —- 12 =]
(a) (b)

Fig. 4. Test section under simple shear analysed as () fixed-ended beam and (b} cantilever beam.

Each test section can be viewed as a fixed-end beam under shear loading. which can
then be analysed as two cantilever beams of half the length of the original beam (Fig. 4).
By using the Timoshenko beam theory the displacement in the y-direction is obtained by
Tsai and Daniel (1991) as a function of both the axial modulus, £,. and the in-plane shear
modulus G,, of the laminate :

X .\':
)5 (33)

where i = specimen thickness, ¢ = width, L = test section length,

The shear correction factor &* for cross-ply laminates was shown by Tsai et al. (1990)
to be equal to §/6, as in the case of isotropic materials.

From cqn {33) we obtain the deflection of the cantilever beam of Fig. 4(b) as

0 oL’
Pratiz = 5G . ha -t 2L hat’ (34)
which leads to
60LE &
G = QLE\u 35)

YT 002 B = SQLY

In the test we measure the relative deflection d of the center rails with respect to the
outer rails and the applied load P. In eqn (35)

u\'al,‘.’. = ()‘/2\ (36)
Q= P/2, (3N
thus,
6PLE u*
G., LLa (38)

= 103 E = SPLY

The laminate axial modulus £, has been obtained by Tsai e al. (1990) as a function of
transverse crack spacing. If we neglect the Poisson ratio effect, we have:

= - hFE, 2 1./ -1
= 0 N Y tex
E\' - Er[l + h'E‘ 1l/‘ tdnh < 2 )] R (39)

where
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Fig. 5. Shear modulus reduction as a function of normalized crack density in 90° layer of cross-ply
graphite/epoxy laminates.
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Results for the shear modulus reduction for the two laminates tested are plotted versus
transverse crack density 4, = 1//, and compared with theoretical predictions in Fig. 5. The
agreement is excellent,

LAMINATES WITH CRACKS IN BOTH LAYERS

Stress analysis

In the preceding case a closed form solution was obtained for a cross-ply laminate
with onc cracked layer by simply adding a hyperbolic term to the undisturbed solution for
the undamaged laminate. In the case of laminates with both the 0 and 90 layers cracked
this type of superposition is not justificd and we cannot obtain an analytical solution that
satisfies all boundary conditions. For this reason, a finite difference iteration method was
used to solve the general system of governing equations to satisfy the boundary conditions
of a cross-ply laminate under pure shear loading with all plics cracked. The initial guess
needed in the finite difference iteration procedure was provided by superposition of the
solution of the previous case in two directions, i.c. by adding two hyperbolic terms to the
undisturbed solution for the undamaged laminate. The difference between the initial guess
and the final iteration in the case of local stresses can be large, but it is less than 1% for
the case of shear modulus.

The cross-ply laminate here has transverse cracks with a uniform spacing 7, in the 90°
layer and longitudinal cracks with a uniform spacing /, in the 0 layer, The arca between
two transverse and two longitudinal cracks is called a “block™. The origin of coordinates
ts sct at the center of the block (Figs 6 and 7). In the case of pure shear loading with a
shear force N, per unit length, the displacements in the x-direction are symmetric with
respect to the x-axis and antisymmetric with respect to the p-axis: the displacements in the

{x

Fig. 6. Cross-ply [0,,/90,], laminate with transverse and longitudinal cracks.
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Fig. 7. Laminate element between two transverse and two longitudinal cracks and free body diagram.

y-direction are symmetric with respect to the y-axis and antisymmetric with respect to the
x-axis. Thus,

=8, =0, at x=0, (40)
g, =i,=0, at y=0, 41
e =0 =l =F =0 at x=90, (42)
=0, =lh,, =0,=0at y=0. (43)

The transverse cracks are at x = +/,/2 and longitudinal cracks at y = +7,/2. The stress-
free boundary conditions are:

Nye= Ny, =0, at x= %74,/2, (44)

Ni=Ny, =0 aty=+2,2 (45)

N\, is anti-symmetric with respect to x = +/¢,/2 and N,, is anti-symmetric with respect to
y = +/,/2. These conditions give:

Ni,=0, at x= +//2, (46)
Niy =0, at y= +/,/2. (47)

Around a block the external loading, N, is defined as:

2 /2 2 ri2
Ve J‘ N:.:y()’ = i-fl/z) dy =5 J Nl,n'(x = i[r/2) dx = er' (48)
Colorn : Cydorsz :

By making a cut through the block at y = constant. the total shear force along the section
should equal the total shear loading at the bottom of the block because of the equilibrium
condition of forces in the x-direction in the dotted area of Fig. 7:
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[
ZJ‘ (Niw+ Ny, )dy = N ¢, = constant. (49)

-yl

Now let us consider a slice from the block of width dy (Fig. 7). The total shear force at the
top and bottom of the slice should be constant as was shown in eqn (49). Taking moments
about an axis through the corner of the shaded area in Fig. 7 we obtain the conditions :

Niow=N,/2, at x= +/¢./2. (50)
Similarly,
Ny =N,/2, aty= +/¢,/2. (51
The force—displacement relations:
Nio=Qnll 4+ Q. (52)
Ny = Qaity + Q120 (53)
Niw = Qeolity 4. (54)
Nyo= Qniiz + Q1202 (55)
Ny=Qaliy + QP (56)
Nao = Qeallizg+0:,), (57)

are tntroduced into eqns (44)-(47), (50) and (51) to obtain the following displacement
gradients:

= — Q:T Fi,. at x= +¢,/2, (58)
i . N,

0, u,,+ TN at x = +2,/2, (59)
iy, = — (le Frye AL X = £4,/2, (60)
Fy = —la,, at x= +//2, 61)
G, = =F at y= +£,/2, (62)
F, = — g'u. o oaty=+2,/2, (63)
- - N,

Uy, = =0+ .00 at y = +/¢,/2, (64)
fyy = — Q:: Fae At y= +£,/2. (65)

1

The finite difference iteration method was used to solve the governing equations for a
quadrant of the block, for which we have sufficient boundary conditions (see Appendix).
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The displacements obtained for the case of only one cracked layer (90 ) are modified and
used as the initial guess in the iteration process:

a, =Cy, (66)
- _ C hl err - h( ) 67
O =t B2, T huxcosh (22,72) ST ) (67)
.= C (68)
F, = C,x N inh (zx) (69)
frE et Q(,(,2(/x,~i-h:)azcosh(at/’x/2)SI o
where
N Hif1 1 3G,:G1s
= oyt a= (2B =) and Hyy = U
CHG= oA+ TSN 0. (h.*h:) e = G Gy

Adding similar hyperbolic disturbance terms for the longitudinal cracks to eqns (66) and
(68) we obtain:

N,
e v e 118
= = s h) s cosh (7 2) SR ) (70)
I, N,

hy Quo2(h, +hy)fs cosh (7,/2)

;,_\/”“(I I) and H _,“_:,;A(,;_L‘G”,,,,
= Qe /1|+/1: an ”_/’an'*‘hnGz.\‘

The displacements given by cqns (67), (69), (70) and (71) arc used as the initial guess in
the finite difference iteration.

The iteration process is terminated when the maximum difference in displacement
between the last iteration and the preceding one is less than 3% of the last value. The
displicements obtained in this last iteration are introduced into eqns (52)-(57) to calculate
the forces. The shear forces per unit length in each layer of a [0,/90,], graphite/epoxy under
pure shear loading are plotted along the x- and y-axes in Fig. 8. The difference between the
initiad guess and the last iteration is substantial near the crack.

iy = Co+ sinh (fiy), (7n)

where

The interlaminar stresses obtained by Tsai and Daniel (1991) are:
Th: - Ivl (8 + Nl (N3 = — NZ.r,r + Nl.ty,,r . (72)
rlr: NI [T + NI (Y N!nxx + Nlr,r
I, h,
G = - (rn:.r + rn‘;r) = ‘)‘ (Nlr..rx +2Nl.\gv..w + Nl)’.}'l‘)' (73)

Along the sections ¥ = +7,/2, eqn (44) gives

Nl.n' = NI.: = O'

eqn (50) gives
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Fig. 8. Shear forces, V,,, and N,,,. by initial guess and final iteration of finite difference method.

Ny, =N,/2,
and continuity and anti-symmetry with respect to x = +7,/2 give
Ny =0.
Along the sections v = +7,/2, eqn (45) gives

Nl\r = NII‘ = 0'
eqn (51) gives

NZ(\' = Nry/zv
and continuity and anti-symmetry with respect to y = +/7,/2 give

Nv“ =0

The above are introduced into eqns (72) and (73) to yield :

N )

o
at x= + =t/
I:fu.-] . [N:.._,-&Nz,",._y,.:' ) [oo:| at x= +¢,/2 and y = +7,/2

L Ivl Ly + le.l'

0
|:0j|. along x = +/,/2 or y= £¢,/2

g.=ow, at x=//2 and y= +/,/2. (75

This result suggests that the cross-ply laminate with cross cracks cannot sustain any
shear loading. In reality stresses do not become infinite or cross-ply specimens under shear
would delaminate instantly at relatively low applied shear stresses.
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Shear modulus reduction
The work done by the external shear loading is:

“

2 02 ‘.2
w=J N iy = /.-/Z)dx+J Nol@:l (v = =£,/2) ¢v+f Nol6il(x = £2)dy

w

o

v

-
v

+f CNGIRI(x = —£/Ddy. (76)

-2

If there is no damage in the laminate, the displacements will have no disturbance terms.
This means that @, = i, = C,y and ¢, = §, = C,x. In that case the work is given by:

(L,
W=IN, ———F—. 77
T Qee2(h +h2) an
Using the initial guess to calculate the work we obtain:
" ’ L,
W=INL - (78)

Y0 Qae2(t, +113)

where py; is the laminate shear modulus reduction ratio given by the first guess as

hy, 2 af N b 2 B, !
P = [I +h. ” l.mh( 5 )+h: s, l‘mh( ) )] . )]

The shear forees along the boundary are introduced into eqn (76) and the work
caleulated is equated to that given by eqn (78) to obtain a value for the shear modulus
reduction ratio p,;. When this was done it was found that the value of p; obtained by the
finite difference iteration was within 1% of the value given by eqn (79) which results from
the initial guess. Thus, the first guess based on superposition of solutions for a single set of
cracks is more than adequate for calculation of shear modulus reduction. The shear
modulus reduction was calculated for a [0,/90,], graphite/epoxy laminate and plotted versus
transverse (907 fayer) crack density for various values of longitudinal (0 layer) crack
density in Fig. 9.

-
»”
Normajized Loagitudinai
IZ\Z‘ Crack Dca&y
<) 2,h,
=) — 0.00
2 ——— 0.09
g —— 018
- - 0.27
Y —c— 036
@ — 045
g — 0.54
= — .63
-g ————— .72
S — 081
0.1 —— 090

L o

3 0.0 +———————r—r———r

& 0.00.10.2030.405060.70.380591.0

Normalized Transverse Crack Density, 2),h;

Fig. 9. Predicted shear modulus reduction as a function of normalized crack densities of [0,/90,),
cross-ply graphite/epoxy laminates.
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Fig. 10. Shear modulus reduction as a function of normalized crack densities of [0, 90,], cross-ply
graphite epoxy laminales.

Experimental results

Graphite/epoxy cross-ply coupons of [0,/90,], layup were tested to evaluate the pre-
dictions above. A plate of the [0,/90,], laminate was first loaded normally to the 07 layer
to introduce a sct of cracks in that layer. Subsequently, coupons were machined trom this
precracked laminate with their axis parallel to the 0 layer. These coupons were subsequently
loaded in steps to introduce progressively incrcasing cracking in the 90 layer. At cach step.
i.e. for cach set of longitudinal and transverse cracks the shear modulus of the coupon was
measured by the method described before. Results tor shear modulus reduction are plotted
in Fig. 10 versus transverse matrix cracking tor two specific longitudinal crack densities.
The experimental results are in excellent agreement with the analytical predictions.

SUMMARY AND CONCLUSIONS

Aninterlaminar-shear-stress analysis developed carlier for [0,,/90, ], cross-ply Liminates
was applied to the case of a cracked cross-ply laminate under in-plane shear loading. For
the case with only one layer (907) cracked sheur strains, forees and shear modulus reduction
were obtained in closed form. Experimental results for shear modulus reduction due to
cracking in the 90 layer only were in excellent agreement with predictions of this theory
as well as those of Hashin (1985) and Tan and Nuismer (1989). The advantage of the
proposed theory, as fur as shear modulus is concerned, is that it does not need the exact
state of stress in the laminate or any fracture criterion. The proposed approach is easier
and more direct in its implementation.

For the case of laminates with both layers crucked the solution obtained by super-
position in two directions of the closed-Tform solution for a single cracked layer was used
asa first guess in a finite difference iteration process, The stress (loree) distributions obtained
by the final iteration were substantially different from those of the first guess. However, the
shear modulus reduction calculated by the last iteration was within 1% of that obtained
from the initial guess.

Acknowledgements —This work was sponsored by the Office of Naval Research (ONR). We are grateful to Dr
Yapa Rajapakse of ONR for his encouragement and cooperation.

REFERENCES

Aboudi. 1., Lee. S. W, and Herakovich, C. T. (1988). Three-dimensional analysis of laminates with cross cracks.
J. Appl. Mcch. 58, 389 -397.

Allen, D. H., Harris, C. E.. Groves, S. E. and Norvell, R, G. (1988). Characterization of stiffness loss in crossply
laminates with curved matrix cracks. J. Comp. Muter. 22,71 80.

Caslini. M., Zanotti. C. and O'Bricn. T. K. (1987). Study of matrix cracking and delamination in glass/epoxy
laminates. J. Comp. Technol. Res. 9(4), 121-130.



3264 C.-L. Tsar and [ M. DaniEL

Daniel. 1. M. and Tsai, C.-L. (1991). Analytcal expernimental study of cracking in composite laminates under
biaxial loading. Comp. Engng 1(6). 355-362.

Dvorak. G. J.. Laws. N. and Hejazi. M. (1983). Analysis of progressive matrix cracking in composite luminates.
thermoelastic properties of 4 ply with cracks. J. Comp. Muter. 19, 216-234.

Groves, S. E., Harnis, C. E.. Highsmith. A. L.. Allen. D. H. and Norvell. R. G. (1987). An experimental and
analytical treatment of matrix cracking in crossply laminates. Expl Mech. 27, 73-79.

Hashin, Z. (19835). Analysis of cracked laminates: a variational approach. Mech. Mater. 4. 121 -136.

Hashin, Z. (1987). Analysis of orthogonally cracked laminates under tension. J. Appl. Mech. 54,872 -879.
Herakovich, C. T.. Aboudi. J., Lee. S. W. and Strauss. E. A. (1988). 2-D and 3-D damage etfects in cross-ply
laminates. Mechanics of Composite Materials (Edited by G. J. Dvorak and N. Laws), AMD-Vol. 92. pp. 143

147. New York.

Highsmith. A. L. and Reifsnider. K. L. (1982). Stiffness reduction mechanisms in composite laminates. In Darmage
in Composite Materials, ASTM STP 775 (Edited by K. L. Reifsnider). pp. 103-117. American Society for
Testing and Materials, PA.

Laws, N. and Dvorak. G. J. (1988). Progressive transverse cracking in composite laminates. J. Comp. Muter. 22,
900-916.

Lee. J.-W. (1988). Damage development, property degradation and life prediction in composite luminates. Ph.D.
Dissertation, Northwestern University.

Lee. J.-W. and Daniel. 1. M. (1990). Progressive transverse cracking of crossply composite laminates. J. Comp.
Muater. 24(11), 1225-1243.

Lim, S. G. and Hong. C. S. (1989). Prediction of transverse cracking and stitfness reduction in cross-ply laminated
composites. J. Comp. Mater. 23, 695 -T13.

Ogin, S. L., Smith, P. A, and Beaumont, P. W. R, (19835). Matrix cracking and stiffness reduction during the
fatigue of a [0.90], GFRP laminate. Comp. Sci. Technol, 22, 23-31.

Sun, C. T. and Jen. K. C. (1987). On the etfect of matrix cracks on laminate strength. J. Reinforced Plast. and
Comp. 6, 208-222.

Talreja, R. (1985). Transverse cracking and stiffness reduction in composite laminates. J. Comp. Marer. 19, 335
375,

Tan, S. C. and Nuismer, R. J. (1989). A theory for progressive matrix cracking in composite laminates. J. Comp.
Mater. 23, 1029 1047,

Tsai, C.-L. and Daniel, [ M. (1991). The behavior of cracked crossply composite laminates under simple shear
loading. Comp. Engng 1,3 11

Tsai. C.-L.. Danicl, 1. M. and Lee, J.-W. (1990). Progressive matrix cracking of crossply composite laminates
under biaxial loading. In Microcracking-Induced Damage in Composites (Edited by G J. Dvorak and D, C.
Lagoudas), Proc. of ASME 1990 Winter Annual Mecting, AMD-Vol. [H, MD-Vol. 22, pp. 9 18 ASME, New
York.

Tsai, C.-L., Daniet, I M. and Yaniv, G. (1990). Torstonal response ol rectangular composite liminates. J. Appl.
Mech. 112, 383 387,

Yaniv, G, Daniel, I M. and Lee, J. WL (1989). Method for monitoring in-plane shear modulus in fatigue testing
of composites. In Test Methods for Design Allowable for Fibrous Compoysites, ASTM STP 1003 (Edited by C.
C. Chamis), Vol. 2, pp. 276 284, American Society for Testing and Materials, PA,

APPENDIX: FINITE DIFFERENCE PROCEDURE FOR STRESS ANALYSIS OFF LAMINATES
WITH CRACKS IN BOTH LAYERS

The finite ditference iteration method was used to solve the governing equations tor a quadrant of the block,
for which we have suflicient boundary conditions. This quadrant is cut into small elements of length Av and height
Ay, where Av =728 and Ay =7, /2N with M and N the number of clements in the v- and yp-directions,
respectively. The boundary conditions in the central difference formulu used are (Fig. Al):

atx =0,
(0, ) =42, ) (Al)
F 0. ) = —F (2 ), (A2)
(0, ) = i (2. /), (A3)
F3(0, ) = ~F (2. ) (Ad)
aty =0,
4,(1.0) = —a,(i.2), (A3)
FL0) = 7,(.2), (A6)
G00) = —id,(0.2). (A7)

F00.0) = 7,12 (A8)
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Fig. Al. Mesh of block for finite difference procedure.

atx = +7./2.

Q.~ M+ 1, j+1)=0(M+1, j—l)

s ag oy
d(M=-2,j)=a(M. - Qn Ay

N M+ j+ D) —a(M+1, j-1
'7|(1"+2-j)=‘T|(4".j)+[ o UM+ j+ 1) = ( J )]213.\’.

Q0 28y

QM+, j+ D) =0,(M+1L, j—l)
(M +2, ) = ad,(M, j)-é: Ay Ax,

M+ j+ D) ~a,(M+1, /~l)

) 2 ) =5, i
Fi(M+2, 7)) =0,(M, )= 34y

andat p = +£7,/2,

G (i + 1. N)=5,(i=1,N)

(i N+2) = d, (i, N)~ e

24y,

Qi i+ L N) =i, (i— 1, N)

F (L N+2) =5, N)—Q;; A%

2Ay,

5oli+ 1, N)=Gy(i—1. N
.z,(i,N+2)=.;,(i.N)+[ No _ 0yit 1L N) =000 )]ZAy,

20,000 2Ax

s i+ LN) == 1, N
Fi N+ = iyli Ny - 2 B LN —al )

2Ay.

0. 2Ax
The governing equations (1)-(4) then become
(23\; -Ef-?+ lT)“‘(‘ - H i) = O u.(i+l.jz;:2,(i-l.j)+Q“ﬁ,(i.j+lgfz(i,,'_n
+(Q.-+Q..)vz(‘+l gD - U;(l—l“jA);-:;(l' =) +5(i=1, j=1)
(:g‘: S hn) (. ,)_L_,, Gij) = Q”a.(iu.;‘);f.(i—l.j)+Q“a.(i.j+lg:z.(.;,~_|)
+(QI:+Q“)1’M(I'+I./'+l)—-ﬁ,(i—I.“jgx—z;(i.j—l)+,3,(,'_|'j_|)
(zg %_u ,;)v (i. ,,__’__M, )= Q”E;(i.j+l2-4}-'f;(i.j—l)+Q“i:(i+l‘jz;;'v:(i—|,j)

G (i4+ 1L j+ ) =dy(i— 1, )=, (i j— D +a,(i—1,j-1)
+(Qur+Qu HEERLEDZREE LI ‘ :
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(A9)

(A10)

(AlD)

(A12)

(A13)

(Ald)

(AlS)

(A16)

(AID)

(A18)

(Al9)
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Qs: Qu H.N. . He oo . Fl j+D+E L j-1) i+ L+ (i-1LJ)
N e 3P e I BF — ol = s 5 3
('A;" ARt L f) i FHL 1 =0 A +Qse i
a i+l j+=dli=L ) ~d (i, j-D+a (i~ j-1)
Q12+ Q) 2 T LT (a2

From eqns {40} and {41) we obtain

Fll.py=rdl.j} =0, at x=0, {A2)

(D) =a (i) =0, at y=0, (A22)

and from eyns (38), (60). (63} and (65), we obtain:

ty,, = _Q'-‘l',“. at x = ££./2, (A23)
Qu

= — 'Q“‘E Oy At X = %772, (A24)
QI-Y

Fpo=— Q. doat y=£472 (A25)
Q.

fro=— 5 d al y=$0,/2 (A26)

Introducing cqns {A23) and {A24) into egns (3) and (4). and cqns (A25), {A26) into eqns (1), (2) and applying
the central ditference formula we get:

‘ Qi Q@ 2 Qucdi€e Ons ”:." JUTY 7 SP S
7 5 . N y
{‘- Ayt + *Ax + " (1, f) by (¢, f)
Dot@Qe + Qo |Fi i+ D B =) | i+ L)+~ 1)
[0 - @@ |G IED I o BOREIRLESID i yr
) Qo Q@+ Qa0 Que Hy . . Hy . oo
il 5 11, M
L- A_;-" +2 A.\"’ + h' Dl(u‘. ]) h| lv‘(l j)
] Dl Q 1+ Qo | Eoli j+ 1) 45,0, =1 3 (i1, )+ li=1,
1LQ“'i"'{éé;“gfﬂjt"’{{f g:.b j=h) o Bl ’i;:i‘“ D e )
it 5 |

205200+ 0l Ly o, M i
Ax” Ay h,

o Hy .o
e el CAUM R e UY)

¢ Goo  Hy Linli+ 1 Y+~ 1, /) i, j+ D +a i j-1)
=127 42T L 5 T . = +7./2, 2
[ ac tIAE T A + Qe A +4,/2, (A29)
O~ Qi+ QudiQr Qs M. . Hy
QM TR T anli I e Y -t g
[- Ay +“A,r‘+ I, iy h, i)

) by ) b £ 7 i * ] 7] '- * f 7 ‘t i i '!‘ f—
x[gn—g‘-"r(.(:»-’.iq-).]"‘(”" +adi-1 j}+ @ (i, jal)y+a, (i, j—1) Y= 0.2 (A30)

0 Ax’ Qe ay? ’

Equations (A19) and (A20) are used to caleulate (4, j) and &0, j) when i # Lor M+ 1. When i = M+ |, we
use eqns (A27) and (A28). When i = [, §,(i. /) = #,(i. f) = 0. Equations (A17) and (A18) are used to calculate
@i ) and Gy /) when f# L or N+ L When f= N+ 1, we use equations (A29) and (A30). When j =1,
(i, 1) = 4 U, /) = 0. The values on the right-hand side of eqns (A17)-(A20) and egns (A27)-(A30) are given by
the indtial guess for the first iteration or by the previous iteration for subsequent iterations. There is a problem at
the singular points x = £/, /2 and y = £7,/2. Equations (A10) and (A 13) do not hold simultaneously. The same
condition is true for cqns (A12) and (A1S5). This type of problem is inherent in the finite difference method.
Equations (A 10} and (A15) are sclected for the corner. Different combinations were tried. It was shown that as
long as AX and Ay are small in comparison with 7, and 7, the solutions are very close to each other.
By using the backward difference method we can write the interlaminar stresses of eqns (72) and (73) as:



Behavior of composite laminates under shear loading 3267

N ) =N li-1.)) + Nl ) =N (L j=1)

[r,,:(i. j)] _ Ax Ay (A3D)
(i ) N =N G-1H + NG =Nyl j=b)
Ax Ay
o k[N A=2IN G- N 20
0.(i, j) = ? Ax?

ey Mol D =N li=1 ) =Ny j= D+ N1 =L j=D) | NG ) =280 = ”““"'f‘““z’}. (A32)

Ax Ay Ay’



