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Abstract-An interlaminar-shear-stress analysis developed earlier by T~li t'l al. (1990. Micro­
crtickin.tI-{ndIlCt·c/ D"",tlgt' in Compo.files) for a [t/J_/l1.1. bi-directional composite laminate is used
to solve the case of a cross-ply [0_/90.1. laminate with the 90' layer only or both layers cracked
under pure shear loading. Strains. forces and laminate shear modulus reduction due to matrix
cracking were obtained. Experimental results for shear modulus as a function of crack densities
were obtained by a simple shear lest and they agree very well with the theoretical prediction.

INTRODUCTION

A great deal of work has been reported to date on axial stiffness degradation in composite
laminates due to matrix cracking. Highsmith and Reifsnider (1982) and Ogin ('( al. (1985)
used a shear lag analysis. Talreja (1985) used stiffness~damage relationships based on
continuum mechanics <lIld internal variablcs; Hashin (1985. 1987) used variational prin­
ciples: Lim and Hong (1989) proposed a modified shear lag analysis; Lee (1988) and Lee
and Daniel (1990) proposed another modilied shcar lag analysis; an intcrlaminar-shcar­
stress <lllalysis was dcvelopcd by Tsai ('( al. (1990); Dvorak ('( al. (1985) and Laws and
Dvorak (1988) uscd statistical fracturc mcchanics: Caslini ('( al. (1987). Sun and Jcn (1987).
Allcn ('( al. (1988) and Grovcs ('( al. (1987) uscd finitc e1cmcnt mcthods; Aboudi ('( ai,
(1988) uscd a sccond-order Lcgcndrc cxpansion for displaccmcnts and thc finite e1cmcnt
mcthod: Tan <tnd Nuismcr (1989) uscd thc statc of strcss in a crackcd laminatc and a
fracturc critcrion based on energy considerations. Relatively few investigations have dealt
with shear modulus reduction. Hashin (1985). Tan and Nuismer (1989) and Herakovich 1:(

al. (1988) analysed cross-ply laminatcs with cracks in the 90" layer under in-plane normal
and shear loading but they did not offer experimental data for comparison. Yaniv 1:( al.
(1989) conducted simple shear tests to monitor the shear modulus reduction during fatigue
loading. An improved simple shear test was described recently by Tsai and Daniel (1991).

A general interlaminar-shear-stress analysis was developed earlier for a [f/)",/().J. bi­
directional compositc laminate by Tsai ('I al. (1990) which docs not start with the
usual assumption of thc classical shcar lag <lI1alysis that the interlaminar shcar strcsses are
proportional to the displacement dilfcrcnce between the two. layers. However. the analysis
shows agreement with this assumption. From this analysis a system of governing equations
was derived that involves only in-planc displacements in both layers. based on equilibrium.
continuity and boundary conditions. This system can be solved to analyse cross-ply lami­
natcs [0,"/90.1. with one or both layers cracked under dilfercnt loading conditions by
imposing appropriatc boundary conditions, Thc cracks in the matrix arc assumed to bc
normal to thc x-y planc (Fig. I). although it was found experimentally by Highsmith and
Reifsnidcr (1982). Grovcs ('( al. (1987) and Allen ('( al. (1988) that this is not always truc.
Predictions of stiffness reduction due to cracks in both layers were obtained and provcd
experimentally by Daniel and Tsai (1991). In this work the reductions of shear modulus
duc to cracks in the 90' layer only and due to cracks in both layers are predicted and verified
experimentally. Although the approach used here is fundamentally different. the prediction
for shear modulus reduction due to cracks in the 90' layer is identical with that of Hashin
(1985) and Tan and Nuismer (1989) and agrees very well with experimental data.
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Fig. I. Cnlss-ply [O•.IlJO.I. laminatc with craded lJO layer and rree body diagrams or c1emcnts.

GOVERNING EQUATIONS FOR CROSS-PLY LAMINATES

For cross-ply laminates the interlaminar-shear-stress analysis provides the relation­
ships among the through-the-thickness average displacements of each layer in the form of
the following partial differential equations obtained by Tsai e/ al. (1990):

( I )

(2)

(3)

(4)

where Qtl. QI~' Q!~ and Q66 are stiffness parameters of the basic lamina. with Q66 = GI~

(in-plane shear modulus) in our case; ii I, t'l. ii! and l'! arc average displacements of the 0'
and 90' layers in the x- and y-directions, h I is thickness of the 0' layer and h! is the half
thickness of the 90' layer (Fig. I). H II and H~! arc interlaminar-shear-stress parameters
given by

where G 1.1 and G!J are out-of-plane shear moduli of the basic lamina.
The left-hand sides of eqns (I )-(4) are gradients of stress which can be related to

interface shear stresses. The right-hand sides are differences of displacement between the
two layers. The interlaminar-shear-stress parameters can be viewed physically as effective
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shear stiffnesses relating interface shear stresses and average displacement differences
between the two layers.

LAMI:-':ATES WITH CRACKS 1:-': 90 LAYER

Stress analysis
The stresses and strains in the undamaged laminate are independent of the location

coordinates x and y. This means that the displacements iii, 1~1' Ii! and f! should be linear
and. under pure shear loading. should give no rise to normal strains or stresses along the
x-and ~axes: .

Ii I =CIY. (5)

f l =C!x. (6)

Ii! = C~Y. (7)

f! = C~x. (8)

When only the 90 layer is cracked with a crack spacing (,. the disturbance in the
solution above will only be a function of x (Fig. 2). Furthermore. only the displacement
components I~ I and f! will be disturbed in order to maintain the pure shear state of strain.
This disturbance is a hyperbolic term as suggested by Tsai ('t al. (1990) for the governing
equations (I) (4). Thus. for the cracked laminate we have:

(9)

( 10)

( II )

( 12)

when: :x is the eigenvalue and C, (i = 1.2..... 6) arc unknown coellicients to be determined.
Substituting eqns (9) -( 12) into eqns (1)·(4). we obtain:

(13 )

( 14)

( 15)

z

N.,

Fig. 2. Cracked cross·ply [Om/90.I. laminate under pure shear loading.
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(16)

The displacements then become:

which result in zero normal strains. Shear strains are derived as:

h,
i'llI = C I +C~ -,' Cf,Ct cosh (!Xx).

/1

forom these shear strains. we ontain shear forces in each layer as follows:

(17)

(18)

(19)

(20)

(21 )

(22)

(23)

(24)

All normal forces are zero.
If N" is the shear force per unit width (or length) applied to the laminate. then at the

crack boundary x = ±{,12 we have N I " = N".j2 and N~" = O. This condition yields:

N,l'
QI,/>2(h l +h~)!X cosh (iXl,/2)'

(25)

(26)

There is an infinite number of pairs of solutions for C, and C~. because of the rigid body
rotation. However. the sum (C 1+ CJ is always a constant.

The shear strains and shear forces in each layer become:

(27)

(28)

(29)
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Nnh z [ cosh (:xx) 1
Nz-". = 2(h, +h~) 1- cosh (:x/,/2)}

3:!55

(30)

Shear modulus reduction
The shear strain in the laminate defined as the average shear strain in the undamaged

layer is:

(f"/2 )/ N
Yn = y",.dx I, = Q "(~ h )'

-1.;2 PG hh- 1+ Z

where PG is the shear modulus reduction ratio:

[
2"~ I (/')J-Ipc; = I + - - - tanh :x 1
1,"la _

(31 )

(32)

£xI'Nim('ntal f('sults
The material used was a graphite/epoxy (AS4/350 1-6, Hercules, Inc.) with the rollowing

properties:

longitudinal modulus: £1 = 145 GPa (21.0 Msi),
transverse modulus: £2 = 10.6 GPa (1.54 Msi),
in-plane shear modulus: G I2 = 6.9 GPa (1.00 Msi),
out-or-plane transverse shear modulus: G I ) = 7.0 GPa (1.01 Msi),
out-or-plane transverse shear modulus: G2.1 = 3.7 GPa (0.54 Msi),
major Poisson's ratio: Vl2 = 0.27.

Composite cross-ply coupons or [0/90~1. and [O/90~l, layup were tested in a fixture
specially developed by Yaniv et al. (1989) (Fig. 3). The specimens were standard str'light­
edge coupons, 2.54 Col (I in.) wide and 23 Col (9 in.) long. When the specimen is mounted
in the fixture. two 1.27 Col (0.5 in.) wide and 2.54 Col (I in.) long strips or the coupon are
exposed as the test section and are subjected to shear loading. The relative motion or the
central rails with respect to the outer rails is measured with an extensometer as shown in
Fig. 3.

T... _

--i--'-I'"

p

Fig. 3. Simplc shear tcst Ihturc.

SAS 29:24-"
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Fig. 4. Test section under simple shear analysed as (al fixed-ended beam and (bl cantilever beam.

Each test section can be viewed as a fixed-end beam under shear loading. which can
then be analysed as two cantilever beams of half the length of the original beam (Fig. 4).
By using the Timoshenko beam theory the displacement in the y-direction is obtained by
Tsai and Daniel (1991) as a function of both the axial modulus. t" and the in-plane shear
modulus G". of the laminate:

(33)

where h = specimen thickness. a = width. L = test section length.
The she<lr correction factor k~ for cross-ply laminates was shown by Tsai £'t at. (1990)

to be cqual to 5/6. as in the case of isotropic materi<lls.
From eqn (33) we obt<lin the dellection of the cantilevcr beam of Fig. 4{b) as

which leads to

3Q QL'
1\.I./~ = 5("' / L+ ,,/-./ \.

I ". /II _ ~, /lr
(34)

(35)

In the test we measure the rehttive deflection 15 of the center rails with respect to the
outer rails and the applied load P. In eqn (35)

thus.

l\~/.~ = 15/2.

Q = P/2.

(36)

(37)

(38)

The laminate axial modulus t.t has becn obtained by Tsai et a/. (1990) as a function of
transverse crack spacing. If we neglect the Poisson ratio effect. we have:

(39)

where
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Fig. 5. Shear modulus reduction as a function of normalized crack density in 90' layer of cross-ply
graphite/epo:\y laminates.

to = '2I1 I E 1 +'2l1 zEz

, "
Results for the shear modulus reduction for the two laminates tested are plotted versus
transverse crack density A., = Ifl, and compared with theoretical predictions in Fig. 5. The
agreement is excellent.

LAMINATES WITH CRACKS IN nonl LAYERS

,S·/r('.u (I/Ialy.fis

In the preceding case a closed form solution was obtained for a cross-ply laminate
with one cracked layer by simply adding a hyperbolic term to the undisturbed solution for
the undamaged ktminate. In the case of laminates with both the 0 and l)(} layers cracked
this type of superposition is not justified and we cannot obtain an analytical solution that
satisfies all boundary conditions. For this reason, a finite diflcrence iteration method was
used to solve the general system of governing equations to satisfy the boundary conditions
of a cross-ply laminate under pure shear loading with all plies cracked. The initial guess
needed in the finite diflcrence iteration procedure was provided by superposition of the
solution of the previous case in two directions. i.e. by adding two hyperbolic terms to the
undisturbed solution for the undamaged laminate. The diflcrence between the initial guess
and the tinal iteration in the case of local stresses can be large. but it is less than 1°1., for
the c'lse of shear modulus.

The cross-ply laminate here has transverse cracks with a uniform spacing I, in the 90 '
layer and longitudinal cracks with a uniform spacing I .. in the 0 layer. The area between
two transverse and two longitudinal cracks is called a "block". The origin of coordinates
is set at the center of the block (Figs 6 and 7). In the case of pure shear loading with a
shear force N", per unit length. the displacements in the x-direction are symmetric with
respect to the x-axis and antisymmetric with respect to the y-axis; the displacements in the

z

x

tIC
Fig. 6. Cross-ply [Om/9O.1. laminate with transverse and longilUdimll cracks.
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Fig. 7. Laminate element between two transverse and two longitudinal cracks and free body diagram.

y-direction are symmetric with respect to the y-axis and antisymmetric with respect to the
x-axis. Thus.

v, = l'z = O. at x = O. (40)

til =tiz =0. at y=O. (41 )

(42)

iii ...... = "I... = liz.,· .. = i;z.,· = O. at y = O. (43)

The transverse cmcks are at x = ±I.t /2 and longitudinal cracks at y = ±1... /2. The stress­
free boundary conditions are:

N zx = Nztl' = O. at x = ±1,/2. (44)

Nil' = NIti' = O. at y = ±I,.j2. (45)

Nit is anti-symmetric with respect to x = ±l.t /2 and Nz,. is anti-symmetric with respect to
y = ±1... /2. These conditions give:

Nit = O. at x = ±1,/2. (46)

N 2,. = O. at y = ±1,./2. (47)

Around a block the external loading. Nt,.. is defined as:

2 fl.12 2 fl..Iz
I Nzt,·(Y = ±1..J2)dy = (- Nlt.I·(x = ±1.J2)dx = Nt,,,

.. -1.12 ',. -1,12
(48)

By making a cut through the block at y = constant. the total shear force along the section
should equal the total shear loading at the bottom of the block because of the equilibrium
condition of forces in the x-direction in the dotted area of Fig. 7:
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1(·2

2 . (Nlno+Nz.rl.)dy = N.•.tx = constant.
-f t/2

3259

(49)

Now let us consider a slice from the block of width dy (Fig. 7). The total shear force at the
top and bottom of the slice should be constant as was shown in eqn (49). Taking m'Jments
about an axis through the corner of the shaded area in Fig. 7 we obtain the conditions:

Nino = N.../2. at x = ±l.l2.

Similarly,

N ~<.I' = N,)2, at y = ± t ,./2.

The force~isplacementrelations:

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

arc introduced into eqns (44) -(47). (50) and (51) to obtain the following displacement
gradients:

_ QI2 _
111,., = - Q- '- l'1""

II
at x = ±t./2, (58)

_ N....
VI •• = -111.,'+~JQ . at x = ±tx l2,

- 'I 66

- QI2 - t +t 12Ul..t = - Q- t'2.,., a x = _ .f ,

22

- QI2 - +t 12t'I,,' = - Q--u l .... at y = _ y .
22

- - Nt\' +t I'"II, . = -L', + --- at}' = _ ,I' ~,
',,1 ...' 2h

2
Q66'

; - _gI 2 - t - + t I')L 2.1' - Q ilL.. a y - _ . ,I' -.

II

(59)

(60)

(61 )

(62)

(63)

(64)

(65)

The finite difference iteration method was used to solve the governing equations for a
quadrant of the block, for which we have sufficient boundary conditions (see Appendix).



3260 c.-L. TSAI and I. M. DA~'EL

The displacements obtained for the case of only one cracked layer (90) are modified and
used as the initial guess in the iteration process:

(66)

(67)

(68)

(69)

where

Adding similar hyperbolic disturbance terms for the longitudinal cracks to eqns (66) and
(68) we obtain:

where

_. N", .
1/ = C I' _.. ----.-. - slIlh (fly)

I I. Q,.h 2(1l i +h~)fJ cosh (fJf.!2) ,
(70)

(71 )

3(;'.1 G1.\Ill, =. __ .~- ..
h1G 1 .1+ h ,G1 .\

The displacements given by eqns (67), (69), (70) and (71) are used as the initial guess in
the tinite dillcrence iteration.

The iteration process is terminated when the maximum difference in displacement
between the last iteration and the preceding one is less than 3% of the last value. The
displacements ohtained in this last iteration are introduced into eqns (52)-(57) to calculate
the forces. The shear forces per unit length in each layer of a [0.1/9031. graphite/epoxy under
pure shear loading arc plotted along the x- and y-axes in Fig. 8. The difference between the
initial guess and the last iteration is substantial ncar the crack.

The interlaminar stresses obtained by Tsai and Daniel (1991) are:

[t",] [N I,.,' + N I ",.r] [N1.'.' + NIn.r]
til" = N,,,...,+N,r,.... = - N~H.,+N!,..:,. '

Along the sections x = ±(,/2, eqn (44) gives

cqn (50) gives

(72)

(73)
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Fig. 8. Shear forces. N I .. and N : ... by initial guess and final iteration or finite difference method.

Nil.•. = N"f2.

and continuity and anti-symmctry with rcspcct to x = ±1,/2 give

Along the sections)' = ±f.l2, eqn (45) gives

NI ,,· = NIl' = 0,

eqn (51) gives

N~". = N,.v/2.

and continuity and anti-symmetry with respect to y = ±tv/2 give

The above are introduced into eqns (72) and (73) to yield:

[rlt:] [N~,.,+N~H'I'] ![:J.
'", = N,,,,+N,,.,. = [~J

at x = ±t.,j2 and y = ±t,f2

along x = ±1,/2 or y = ±t..l2

(74)

",: = 00. at x = ±1./2 and y = ±I..l2. (75)

This result suggests that the cross-ply laminate with cross cracks cannot sustain any
shear loading. In reality stresses do not become infinite or cross-ply specimens under shear
would delaminate instantly at relatively low applied shear stresses.
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Shear modulus reduction
The work done by the external shear loading is:

(76)

If there is no damage in the laminate. the displacements will have no disturbance terms.
This means that iii = liz = CIY and f l = f z = Czx. In that case the work is given by:

(77)

Using the initial guess to calculate the work we obtain:

where I'li is the laminate shear modulus reduction ratio given by the first guess as

[ h! 2 (\1.1,) hi 2 (WI.)] I
I"i = I + I. tanh ') + I tanh ')

_ I, \1.!, - I z //1.. _

(78)

(79)

0.0 +---.-......-,...........--."--r"......-,...........--."--r".......,.--......-.....j
0.0 0.1 0.2 O.J 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The shear forces along the boundary arc introduced into eqn (76) and the work
calculated is equated to that given by eqn (78) to obtain a value for the shear modulus
reduction mtio Pli' When this was done it was found that the value of Pli obtained by the
finite dilli.:rence iteration was within I% of the value given by eqn (79) which results from
the initial guess. Thus. the first guess b~tsed on superposition of solutions for a single set of
cracks is more than adequate for calculation of shear modulus rcduction. The shear
modulus reduction was calculated for a [O,/90d, gmphite/cpoxy laminate and plottcd versus
transverse (90 layer) crack density for various valucs of longitudinal (0" layer) crack
density in Fig. 9.

Ie,"" 1.0~--------------' Nor_Uud .....CIl.d1n••

- C~~1.P 0.9
11,,;/ 0.8 !A,b I

~ ~
Q 0.7 009
~ .
:I 0.6 8.18
~ an
~ 0.5 0.36

04 0.45
:; . 0.54
-; 0.3 0.63
~ ~
Q a2 O~

~ ~
.. 0.1

:
.l:
en

Normalized Transycrsc Crack Denslly, 2l.h2

Fig. 9. Predicted shear modulus reduction as a function of nonnalized crack densities of [O}/90}1.
cross-ply graphite/epoxy laminates.
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Fig. 10. Shear modulus reduction as a function of normalized crack densities of [0, 90.j, cross-ply
graphitc cplny laminates.

Experimental results
Graphite/epoxy cross-ply coupons of [0\/90.], layup were tested t() evaluate the pre­

dictions above. A plate of the [0,/90,), laminate was lirst loaded normally to the 0 layer
to introduce a set of cracks in that layer. Subsequently. coupons were machined from this
precracked laminate with their axis parallel to the 0 layer. These coupons were subsequently
loaded in steps to introduce progressively increasing cracking in the l}O layer. At each step.
i.e. for each set of longitudinal and transverse cracks the shear modulus of the coupon was
measured by the method described before. Results for shear modulus reduction are plotted
in Fig. 10 versus transverse matrix cracking for two specific longitudinal crack densities.
The experimental results are in excellent agreement with the analytical pn:didions.

SUMMARY ANI> CONCI.lJSIONS

An interlaminar-shear-stress analysis developed earlier for [O",/l}O"L cross-ply laminates
was applied to the case of a cracked cross-ply laminate under in-plane shear loading. For
the case with only one layer (90) cracked shear strains. forces and shear modulus redudion
were obtained in e10sed form. Experimental results for shear modulus reduction due to
cracking in the 90' layer only were in excellent agreement with predictions of this theory
as well as those of Hashin (I9gS) and Tan and NuisllH:r (19S9). The advantage of the
proposed theory. as far as shear modulus is concerm:d. is that it docs not need the ex.tct
state of stress in the laminate or any fracture criterion. The proposed approach is easier
and more direct in its implementation.

For the case of laminates with both layers ..:racked the solution obtained by super­
position in two dire..:tions of the closed-form solution for a single ..:ra..:ked layer was used
as a first guess in a finite difreren..:e iteration pro..:ess. The stress (force) distributions obtained
by the final iteration were substantially dil1"crent from those of the Iirst guess. However. the
shear modulus reduction calculated by the last iteration was within II};, of that obtained
from the initial guess.

Ackn"","·,II/,·",,·"'.f - This work was sponsorcd oy thc Olliee of Naval Rcscareh (ONR). Wc arc grateful to Dr
Yapa Rajapakse ofONR for his encour;lgclllcl1t ami cooperation.
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API'ENDIX: FINITE DIFFERENCE I'IWCEDURE FOR STRESS ANALYSIS OF LAMINATES
WITII CRACKS IN BOTII LAYERS

The !inite dilference iteration l11ethod was used to solve the governing equations for a quadrant of thc block.
for which we have sullicienl boundary conditions. This quadr'll1t is cut into small e1l:l11enls of length A.\ and hcight
Ay, where Ax = r,:2M and Ay = 1..I2N with M and N the number of clements in the x- and y-tlirections,
respel:tivcly. The houndary l:onditions in the l:enlral dilleren.:e formula used are (Fig. A I) :

at x = O.

at y = o.

,i,(O, i) = lid2, i).

"dO.) = -';1(2. i),

,i,(!l,) = ,i,(2./),

1',(0, i) = -1",(2, j).

,",(i.O) = t',(i.2).

,i,(i.O) = -,i,(i.2).

,",(i,O) = ,',(i. 2),

(AI)

(A2)

(1\4)

(AS)

(A6)

(1\7)

(AS)
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Fig, A I, Mesh of block for finite difference procedure,

atx= ±IJ1.

-(U-~ ')= -(M ,)_Q'll;,(M+l.j+I)-v,(M+l.j-\)2~
u" ~.j U, .j Q" 2~y x. (A9)

;, ~'_; ,[~_ - u,(M+ I.j+ 1)-u,(M+ I.j-I)J~
1,(M+~.j) -I,(M.j)+ 2h,Q.. 2~y -~,~. (AIO)

(AI I)

(AI2)

ami at)' '" ±1,Il.

.' ~ .' v,(i+I.N)-v,(i-I,N)~
1i,(I,N+~) '" 1i,(I.N)- -- 2~x -~)', (AI3)

; (' N+'l '" ; (' N) _ Q~ u,(i+ I.N)-u,(i-I.N) 2A
I, I, - I, I, Qn 2at uy, (AI4)

_, , _, [N" Vl(i+l.N)-Vl(i-I.N)J~
Ul(I,N+_) = Ul(I,N)+ 2h

l
Q•• - 2~x _Ay. (AI5)

.' ~ _, Q'lUl(i+I.N)-Ul(i-I.N)
r'l(/,N+_) = l'l(/,N)- Q~ 2~x 2~y, (AI6)

Thc govcrning cquations (1)-(4) thcn lx.'Comc:

(~{b, ,(?? ~~)'(' ')_'!.~-(' ')_Q ul(i+l.j)+ul(i-I,j) Q ul(i.j+l)+ul(i.j-I)
-A'+-A'+, Ul',j ,U,I,j- n A' +.. A'uX' u,l'" I l Il uX' uy'

Vl(i+ l,j+ I)-vl(i-I,j)-vl(i,j-I)+vl(i-I,j- I)
+(Q'l+Q•• ) 4~,x~y (AI7)

(~ Q" ~ Q.. /I,,) _(' ') 1/" _ (' ') Q u,(i+ l.j)+u,(i-I.j) Q u,(i.j+ I)+u,(i,j-I)
_ ...., +.: -, + --- U, I,j ---- lil I.j '" " + •• ,
~X" ~y" h, h, ~.\,z ~r

li,(i + I. j+ I) -li,(i-I, j) -v,(i.j-I)+v,(i -I. j-I)
+(QI2+Q•• ) 4~.\'~)' (AIS)

(
Q" Q•• /lll)_" /Ill _ , . r;l(i.j+\)+ri:(i.j-l) Q r':(i+l.j)+I;:(i-I.j)

2-,+2----.+- 1·.(r.j)--I',(I.j)=Q" , + •• ,
~r ~X' '':' hl ~)'. ~X'

u:(i+ I.j+ I)-ul(i-I.j)-ul(i.j-I)+uz(i-I.j-l) (AI9)
+(Q,:+Q•• ) 4~x~)' ,
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u,(i+ I.j+ l)-u,(i-I.j)-u,(i.j-l)+u,(i-I.j-l)
+(Q,:+Q•• ) 4~d•.v . (A20)

From eqns HOI and (·H I we obta.in

r,O.j) = (":(1./) =O. at x = O.

U,(i.1) = u:(i.I) =O. at y =O.

and from ellns (58). (601. (63) and (65). we obtain:

(A21)

(A22)

at x = tt,(2.

at x = ±1./2.

at y = ±t.l2.

;It )' = ±1.12.

(A23)

(A24)

(A25)

(A26)

Inlrodm:in:: ellns (A2.l) allll (A24) into eqns (3) and (4). ;lnd l.'qns (A25). (A26) into cqns (I), (2) and applying
lhe l'l'ntral dilli:rence formula. we get;

;It ,~ = ±1.l2. (A27)

at x = tl./2. (A2B)

[, QII -QdQ,: + {! •• )/Qn +' Q•• + IIIIJ' (. ') 1/'1 - ( ..)- . .. .: . ... - 6-:-i T' II, I.] - T II: I.]
_ i ..\ .' II I

'" [Q _{!!:(g...: + (!~~)J u,(i+~. j)+u,(i-I.j) +Q u,(i.j+ I)+u.(i.j-I)
. "Q:: 6x: •• ~y: •

y = tt,j2. (A29)

y = tl,/2. (A30)

ElIU;llions (A 19) and (A20) arc used 10 calculate (;,(i. j) and i;l(i.j) when i #' I or M + l. When i = M + I. we
usc ellns (/\27) and (1\21<). When i '" I. (",(i,/) '" ("l(i.j) = O. Equations (AI7) and (AI8) are used to calculate
,i, Ii, j I ;lnd ,i: (i. j I when j ¢ I or tV + l. When j '" tV + l. we usc equations (A29) and (A30). When j = I.
li,(i. j) ~ ,illi. il = O. The v;llues on the right-hand side ofeqns (AI7)-(A20) and eqns (A27HA30) are given by
the initial guess for the lirst iteration or by the previous iteration for subsequent iterations. There is a problem at
the singular pllillls x = ±1,/2 and y = t 1,./2. Equations (A 10) and (A 13) do not hold simultaneously. The same
condition is true fN eqns (AI2) and (AI5). This type of problem is inherent in the finite difference method.
Equ;llions (/\ 10) and (A 15) MC selected for thc corner. DitTerent combinations were tried. 11 was shown that as
long as i.\,r and t.r arc small in comparison with I, and I,. the solutions are very close to each other.

By using lhe backward dillerencc method we can write the intcrlaminar stresses of eqns (72) and (73) as:
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" h, [N h (i.})-2N,,(i-I.}I-Nu(i-2.}1
O'..(I.j) = "2 6x~

, N,,,(i.}l - N,,,(i-I.j) - N,,,(i.j-I)+ N,,,(i-I.j-I) N,,(i.jl -2N,,(i.}-1) - N ...(i.j- 21J
+.. +..

(.\.l:6.1' 6r

3267

(A31l

(A32)


